On the Generation of Training Samples for Neural Network-Based Mixed Pixel Classification
نویسندگان
چکیده
One of great challenges in neural network-based analysis of remotely sensed imagery is to find an adequate pool of training samples without prior knowledge for the network so that that these unsupervised training samples can describe the data. A judicious selection of training data can be tremendously difficult due to the presence of subpixel targets and mixed pixels, particularly, when no prior knowledge is available. Surprisingly, the above issues have been largely overlooked in the past, where most of the efforts have been focused on exploring network architecture parameters such as the arrangement and number of neurons in the different layers. Very little has been done in regard to the selection of a set of good training samples for networks in mixed pixel classification. This paper revisits neural network-based mixed pixel classification from an aspect of training sample generation and further demonstrates that the selection of training samples can be more important than the choice of a specific network architecture. Since the training samples must be obtained directly from the data to be processed in an unsupervised fashion, four types of pixels: pure pixel, mixed pixel, anomalous pixel and homogeneous pixel are used to demonstrate this concept. A pure pixel is a pixel whose spectral signature is completely represented by a single material substance as opposed to a mixed pixel whose spectral signature is made up of more than one material substance. A homogeneous pixel is defined as a pixel whose spectral signature remains nearly constant subject to small variations within its surroundings. Therefore, a homogeneous pixel can be considered as an opposite of an anomalous pixel whose signature is spectrally distinct from the signatures of its neighboring pixels. In this paper, various scenarios are designed for experiments to substantiate the impact of using these four types of pixels as training samples for mixed pixel classification.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملSub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کامل